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Abstract 

One of the  major goals of molecular biology is to understand how protein chains fold into a  unique 3-dimensional 
structure. Given this knowledge, perhaps the most exciting prospect will be the possibility  of  designing new proteins 
to  perform designated tasks, an application that could prove to be of great  importance in medicine and biotech- 
nology. It is possible that effective protein design may be achieved without the requirement for a full understand- 
ing of the protein folding process. In this paper  a simple method is described for designing an amino acid sequence 
to fit  a given 3-dimensional structure.  The compatibility of  a designed sequence with a given fold is assessed by 
means of a set of statistically determined  potentials (including interresidue pairwise and solvation terms), which 
have been previously applied to  the problem  of  protein  fold recognition. In order  to generate sequences that best 
fit the  fold, a genetic algorithm  is  used, whereby the sequence is optimized by a stochastic search in the style of 
natural selection. 

Keywords: algorithm;  amino  acid; artificial intelligence; computer; de novo protein design; molecular modeling; 
protein engineering; protein  structure 

The successful de  novo design of a protein  structural  domain 
was first described by Regan and De Grado (1988). The prob- 
lem they tackled was to design an  amino acid sequence that 
would fold into a simple 4-helix bundle. The design was based 
on 4 identical helices whose sequence was designed by manual 
model building aimed at stabilizing the 20" interhelical angles 
observed in classical 4-helix bundles. This manual model build- 
ing  identified leucine as  the ideal hydrophobic packing residue 
for this class of helix interaction, and glutamic acid and lysine 
residues (alternating 1 per helix turn  to stabilize the helices  by 
electrostatic  interaction) were used to render the designed pro- 
tein soluble. To  date  no  structure has been determined for this 
design helix bundle,  but experimental evidence has shown the 
expressed protein to be mostly helical, stable, and compactly 
folded. Other groups have attempted similar design experiments 
(Hecht et al., 1990; Sander et al., 1992), and although no de- 
tailed  structures have been determined for any  of the designed 
proteins, there is reasonable evidence that in several  cases at least 
the design goals have been achieved. 

Reprint  requests to: David  T.  Jones,  Biomolecular  Structure  and  Mod- 
elling Unit, Department of Biochemistry  and  Molecular Biology, Uni- 
versity College, Gower Street, London WClE 6BT, UK; e-mail: 
jonesQbsm.bioc.ucl.ac.uk. 

The eventual pinnacle of protein engineering will  be the fully 
automated design of a protein with novel structure and func- 
tion. Achievement of this aim is far in the  future, though some 
early progress has been made. Yue and Dill (1993) have de- 
scribed a simple strategy for designing a heteropolymer sequence 
(comprising just  2 species of monomer: 1 polar, 1 hydrophobic) 
such that its compatibility with a 2-dimensional lattice structure 
is optimized. The work described here is conceptually similar to 
that described by  Yue and Dill, but in this case the objective is 
to design a real amino acid protein sequence such that its com- 
patibility with a  full 3-dimensional structure is optimized. 

In designing a  protein sequence, 2  primary  considerations 
need to be taken into account. Firstly the designed sequence 
must be compatible with the specified fold. Secondly the  de- 
signed sequence must be incompatible with folds other than the 
specified fold. After these constraints are satisfied, we might 
choose to  narrow  the search by favoring sequences that satisfy 
other less tangible constraints, such as ensuring a given sequence, 
has an  amino acid  composition that is typical of the protein's 
intended  folding  type, function,  or location in the organism. 
Where applicable, a  constraint that must override all the previ- 
ously mentioned constraints is that of correctly positioning func- 
tionally important residues, for example the close proximity of 
the catalytic Asp,  His, and Ser in a designed serine protease, or 
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selection of positively charged residues  in a designed phosphate 
binding site. 

Sequence-structure compatibility 

Identifying sequences that  are compatible with a given fold is 
sometimes called inverse protein folding after Drexler (1981), 
and recently several groups have described useful methods  for 
determining sequence-to-structure compatibility (Sippl, 1990; 
Bowie et al., 1991; Jones et al., 1992; Maiorov & Crippen, 1992; 
Sippl & Weitckus, 1992; Godzik & Skolnick, 1992;  see Jones & 
Thornton, 1993, for a review). At  the heart of the evaluation 
function used here is a set of pairwise potentials (potentials of 
mean force), determined by the statistical analysis of highly 
resolved protein X-ray crystal structures. These potentials are 
similar to those originally described by Hendlich et al. (1990), 
though modified to exclude interactions beyond 10 A (Jones 
et al., 1992). 

For specified atoms (Cp + Cp for example) in a pair of resi- 
dues ab, topological level (sequence separation) k,  and distance 
interval s, the potential is given by the following expression: 

AEtb  = RT ln(1 + m,a) - RT In 
f k  (s) 

where mab is the number of pairs ab observed with sequence 
separation k ,  a is the weight  given to each observation, fk(s) is 
the frequency of occurrence of all residue pairs at topological 
level k and separation distance s, f f b ( s )  is the equivalent fre- 
quency of occurrence of residue pair ab, and RT is taken to be 
0.582 kcal/mol. In this work,  short (sequence separation, k 5 

LO), medium (1 1 5 k I 30), and long (k > 30) range potentials 
have been calculated between the following atom pairs: Cp + 

C/3 ,C /3+N,C/3+O,N+C/3 ,N+O,O-+C/3 ,andO+N.  
In addition to the pairwise potentials,  a solvation potential 

for  an amino acid residue a is defined as follows: 

where r is the 070 residue accessibility (relative to residue acces- 
sibility in GGXGG fully extended pentapeptide), f “( r )  is the 
frequency of occurrence of residue a with  accessibility r,  and f ( r )  
is the frequency of occurrence of all residues with accessibility 
r .  Residue accessibilities were calculated using the  program 
DSSP (Kabsch & Sander, 1983), applied to Brookhaven coor- 
dinate files (Bernstein et al., 1977). Only monomeric proteins 
were included in this analysis. 

In addition to these pseudoenergetic components to the ob- 
jective function, other factors can be weighted in. Purely prac- 
tical constraints can be applied to the designed sequence, such 
as limiting the number of mutations from a given reference se- 
quence. In this way it is possible to answer questions along the 
lines of “What is the easiest  way to make this sequence compat- 
ible with this fold?”  A more general constraint that may  be  use- 
fully applied is that of amino acid composition. It is now well 
established (Nakashima et al., 1986) that there is a significant 
correlation between the amino acid composition of a protein and 
its folding class (aa, a& Po). Although it  is not yet known 
whether a protein must have an amino acid composition typi- 

cal of its folding class in  order to  fold, it is at least reasonable 
to constrain the composition of the designed sequence in order 
that it is compatible with the folding class of the intended struc- 
ture. In order to achieve this, an additional term is added to the 
objective function: 

where X is a 20-dimensional vector representing the  fractional 
composition of the 20 amino acids  in the designed  sequence, and 
Y is the average  vector for the intended  class of protein structure. 

Genetic algorithms 

Genetic algorithms (Goldberg, 1989) are similar in concept to 
simulated annealing, though their model of operation is differ- 
ent. Whereas simulated annealing is loosely based on the  prin- 
ciples of statistical mechanics, genetic algorithms are based on 
the principles of natural selection. In a typical implementation, 
the variables to be optimized are encoded as a string of binary 
digits, and a population of random strings is created. This pop- 
ulation is then subjected to the genetic operators of selection, 
mutation,  and crossover. The probability of a string surviving 
from  one generation to the next relates to its “fitness,” where 
a “fit” string is a string relating to  an optimal value of the tar- 
get function. Each string may be randomly changed in 2 ways. 
The mutation operator simply  selects a random bit in the string 
and changes  it to a random value. An alternative means for gen- 
erating new strings is the crossover operator. Here  a randomly 
selected portion of one string is exchanged  with a similar portion 
from another member of the string population. The crossover 
operator gives  genetic search the ability to combine moderately 
good solutions so that “super individuals” may  be created. 

In this implementation of a genetic algorithm,  a genome S is 
defined as a vector of m symbols, where m is the length of the 
protein sequence being designed: 

s, . . . s,. 

A single symbol here codes for 1 of the 20 standard  amino 
acids, which is in contrast to classical  genetic algorithms, where 
each symbol represents a single binary digit (bit), and where in- 
dividual genes in the genome are encoded  by groups of bits. This 
“base-20’’ symbolic representation is found to be far more con- 
venient than  a binary representation and avoids the problem of 
how to map the 20 amino acids onto specific bit patterns without 
bias. Purists will argue that by  using a nonbinary representation 
the method can no longer be  classed as  a genetic algorithm, but 
it is hard to see  how such a restrictive definition is helpful to un- 
derstanding the principles of the  method. 

At the start of the simulation, a population of n genetic  strings 
Si ( i  = 1 . . . n )  is created, where the constituent symbols of 
each strings are selected either randomly, or set to predefined 
values. Given such a population of strings, a new generation of 
strings is created from the old set by a combination of mutation, 
crossover, and selection operators. 

The simplest generation operator is that of mutation. A sin- 
gle mutational event is taken to be the change of 1  amino acid 
symbol, in 1  string, to a new symbol selected from the remain- 
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ing 19 alternatives. Generally more than 1 mutation is made at 
each  generation, the number  of mutations stemming from  the 
mutation probability, which is an  adjustable parameter. To 
choose which symbols to  mutate,  the following scheme is used. 
An integer k is set to  an integral random number between 1 and 
mn, where the first symbol of the first  string  maps to k = 1 and 
the last symbol of the last string  maps to k = mn.  This symbol 
is set to a  different  randomly selected amino acid code. To find 
the next mutation site,  k is incremented thus: 

k ’ = l + k m o d m n + -  
In r 

In(1 - p )  ’ (4) 

where r is a  uniformly  distributed  random  number (0 2 r > I), 
and p is the  mutation probability.  Mutations are made  until 
k > mn, at which point the final value of k is kept to seed the 
selections for  the next generation. 

A simple 2-point crossover operator has been utilized in this 
work. The  population of strings is first sorted in descending or- 
der of fitness. The  top 100CVo (where C is the crossover rate) 
of the  population of strings is taken, 1  pair at a time, and  for 
each pair, 2  random string positions, a and b are generated, such 
that a s b 5 m. Symbols are then exchanged between the 2 
strings: 

where i = 1, 3,. . . ; i 5 nC. 
The selection strategy used is that suggested by Baker (1987) 

based on a hypothetical roulette wheel,  which  is “perfect” in the 
sense that it selects members of the population in the precise ra- 
tio of  their respective fitnesses, though cannot easily be con- 
verted to a parallel  multiprocessor implementation. A  full 
coverage of this and other selection strategies is given in the 
above reference. 

Implementation 

The described method was implemented in ANSI C and should 
run on any Unix workstation (results shown here were obtained 
on a DEC  Alpha 3000/400). The  program  reads as  input a tar- 
get protein structure in Brookhaven PDB  format (Bernstein 
et a]., 1977), a file containing secondary structure assignments 
and residue accessibilities calculated using the program  DSSP 
(Kabsch & Sander, 1983), and a  template sequence as a string 
of I-letter codes and set closures. The  template sequence is used 
to constrain the  random selection of residues by the mutation 
operator. Each position in the template  can be occupied either 
by an “X” character,  indicating  a free choice of amino acid, 1 
of the 20 standard  amino acid codes restricting the choice to the 
specified amino acid alone, or a set closure surrounded by square 
brackets. For example, the string 

XXCXX [MLIV] XX 

represents an 8-residue template, where positions 1, 2, 4, 5 ,  7, 
and 8 are unconstrained, position 2 is forced to be a cysteine  res- 
idue, and position 6 can be any  of  the residues M (methionine), 
L (leucine), I (isoleucine), or V (valine). Using such a  template, 
the resulting protein design can incorporate functionally impor- 

tant sequence patterns (a simple example being an exposed gly- 
cosylation  site) or perhaps be forced to create an exposed 
hydrophobic  patch. 

The  program EvolSeq is available from  the  author by e-mail 
(jones@bsm.bioc.ucl.ac.uk). 

Results 

As a first example, the problem of designing a sequence com- 
patible with a 4-helix bundle  structure is presented. As a target 
structure  the coordinates for Felix-HMQ were taken, which  was 
1 of the 4-helix models built by Hecht et al. (1990). These co- 
ordinates have been deposited in the Brookhaven database 
(Bernstein et al., 1977) as entry  3FLX. 

The genetic algorithm was  set up with an initial population 
of 500 strings, a crossover rate of 0.1, and a  mutation  rate of 
0.0013  (11790). The  structure of  Felix  was designed to incorpo- 
rate a disulfide bridge between helix 1 (residue 11) and helix 4 
(residue 71), and  to accommodate  this, the sequence template 
was set to force Cys residues to be located at these positions in 
the sequence. In this first example, the fitness function used in- 
cluded the previously described pairwise potentials  alone.  The 
simulation was run for 6 cycles  (1,298 generations in cycle 1, 89 
in  cycle 2, 153  in  cycle 3, 70 in cycle 4, 62 in cycle 5 ,  and  no 
change detected after 62 generations in cycle 6 ) .  The resultant 
“optimum” sequence was as follows: 

LAAVLAALLACLAALLAAGIWAAILAILLALIALLLKGIMMAALAALL 

ALLLALLLALHINAEALAALLACLLALLAAL. 

Clearly, this designed sequence is not at all protein-like. Most 
of the sequence is comprised of alanine and leucine, with an ap- 
parent helical periodicity in the choice (leucine being used for 
core packing, and alanine for the exposed  helix  faces). The abun- 
dance of these amino acids is reasonable in the light  of their very 
high helix-forming propensities, though clearly, the sequence is 
far  too hydrophobic to be stable in an aqueous  environment. 
The evident disregard of solvation requirements in the sequence 
is only to be expected given the fact  that  the long-distance 
(> 10 A) contributions to the  potentials were excluded in favor 
of a specific solvation  potential. 

Another  simulation was run using a fitness function from 
which all but the solvation potentials were excluded. Due to the 
simple 1-dimensional form of the  solvation  potentials,  only  3 
cycles (1,136,70,  and 70 generations) were required to optimize 
the sequence. Again, a fairly unrealistic sequence  was obtained: 

DKDYFDKWRKCFDDIDKDKRYKKWYKKIKKIFKWWKDRKKDDRWKDFFDRIRKW 

FDDKKYKGKWYKKIYDCFKDFKDKK. 

In this case, a similar periodicity is observed, but rather  than 
alanine and leucine, lysine (with some aspartic acid) and tryp- 
tophan are used. Again this is reasonable in view of the fact that 
only  solvation effects are under consideration. Tryptophan is 
the residue with the highest propensity to be found highly bur- 
ied, and lysine and aspartic acid with the highest propensity to 
be found highly exposed. An easy solution to  the optimization 
of  the  solvation  potential  terms  alone is therefore to bury  tryp- 
tophan  and expose lysine or aspartic acid. Of course,  there is 
insufficient room in the core of the target  protein  structure to 
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enable so many tryptophans  to be packed together, and so the 
sequence could never fold into  the required conformation. 

In  the third simulation, a combination of the pairwise and sol- 
vation  potentials was used. To allow for  the unequal  distribu- 
tions of the 2 potentials,  the  solvation  terms were scaled-up by 
a factor of 15. This is the average ratio between the sum of pair- 
wise terms and  the sum of  solvation terms in native sequence- 
structure  relationships (based on a set of 102 folds as listed by 
Jones et al. [1992]). Interestingly, only 3 cycles were required 
to optimize the sequence in this case (1,368,92, and 92 genera- 
tions). The final sequence in this case appears  to be a hybrid of 
the 2 previously shown: 

PKEVLEQLRKCLEELAKEKLYEDYLKRLKELLKLLKEYTDEDALKALLEALRKL 

LEEKKVSKQWIQELLECLQELQERK. 

To the eye, this pairwise/solvation-based sequence looks to 
be a  more plausible protein sequence. The myriad tryptophans 
have been generally replaced by leucines, which is altogether 
more acceptable in the light of packing requirements. Neverthe- 
less, the  amino acid composition is  highly  skewed toward leucine, 
glutamic  acid, and lysine, which  is unrealistic in comparison to 
natural protein sequences, though unsurprising considering the 
fact that these were the  amino acids selected by Regan and De 
Grado (1988) for  the a 4  protein design described earlier. The 
final  simulation was therefore  run using the  amino acid com- 
positional bias (Stomp). The target amino acid composition used 
in this case was taken to be the average amino acid composition 
of the all-cr protein  chains in the  January 1993 release of the 
Brookhaven database (Bernstein et al., 1977), as shown in Ta- 
ble l .  A  (arbitrary) weight of 10,OOO was applied to the compo- 
sitional term in order to equalize its contribution relative to  the 
other 2 terms. 

Table 1. Relative amino acid frequencies  of occurrence 
for  the proteins in the all-a (crcr), all-(3 (0(3), and 
mixed (ab) structural classes 

ffff PP f fP  

A 
R 
N 
D 
C 
Q 
E 
G 
H 
I 
L 
K 
M 
F 
P 
S 
T 
W 
Y 
V 

0.1 19 
0.040 
0.043 
0.058 
0.015 
0.040 
0.060 
0.072 
0.024 
0.044 
0.100 
0.072 
0.024 
0.039 
0.037 
0.058 
0.053 
0.013 
0.030 
0.058 

0.086 
0.040 
0.050 
0.062 
0.027 
0.034 
0.049 
0.087 
0.020 
0.046 
0.069 
0.047 
0.01 1 
0.040 
0.051 
0.083 
0.071 
0.016 
0.044 
0.070 

0.087 
0.045 
0.045 
0.059 
0.017 
0.035 
0.060 
0.084 
0.021 
0.055 
0.081 
0.059 
0.020 
0.039 
0.045 
0.064 
0.059 
0.015 
0.037 
0.070 

After  running the genetic algorithm for 4 cycles (1,18 1 ,  7 1 ,  
79, and 79 generations) the following sequence was obtained: 

SPEVFEAMRKCLEALAQAGVPEKYYQTLKRIFEMYHNFTDDDV~KALL~AIRQL 

LNSGGVSDDWLKRIAECLQALKARK. 

The course of the sequence optimization for  the first 600 gen- 
erations is shown in Figure 1. The  final Felix sequence has an 
amino acid composition very  close to the average of an all-a pro- 
tein chain, and  to the eye looks like a plausible protein sequence. 
The final sequence has no detectable sequence similarity to any 
protein in SWISSPROT (Bairoch & Boeckmann, 1991) and is 
only 19% sequence identical to the sequence originally designed 
for the Felix-HMQ structure. Interestingly enough, the sequence 
designed without the compositional bias is 24% identical to the 
original Felix sequence, and given that  the alignment requires 
no gaps to be inserted, despite the low overall similarity, some 
aspects of the sequence are evidently constrained by the  target 
structure and can  therefore be predicted. 

The described optimization strategy ensures that the designed 
Felix sequence is highly compatible with the target  structure. 
However, compatibility may not be enough to ensure that  the 
sequence will fold into  the required conformation.  To increase 
the likelihood of the designed sequence folding correctly it  is im- 
portant  to check if the designed sequence is incompatible with 
conformations other than  the target. This check  is accomplished 
by threading the designed sequence onto a library of  decoy folds 
and observing whether the target conformation is significantly 
more  favorable than  the alternatives. The designed Felix se- 
quence was threaded onto a library of 102 folds as described by 
Jones et al. (1992), along with the target fold,  and  the resulting 
pseudoenergy totals plotted in the  form of a histogram (Fig. 2). 
The designed sequence clearly favors the target  fold. It is inter- 
esting to observe that  the sequence designed by Hecht et al. 
(1990) also clearly favors the target  fold,  though  not to such a 
great extent. 

To investigate the convergence properties of the design algo- 
rithm the program was run with different  population sizes, re- 
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Fig. 1. Plot of objective function value  against  generation  number for 
the Felix sequence design. The solid line  represents  the  highest (worst) 
value in the population of 500 sequences, the  dashed  line  the  average 
value, and  the dotted line  the lowest (best) value. 
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Fig. 2. Threading  histogram for the  Felix sequence designed by  genetic 
algorithm optimization (OPT). The relative position of the sequence 
originally designed for Felix is also shown (REF). 

peating the  run 10 times for each size. The target structure used 
in each experiment was that of acylphosphatase determined by 
NMR (Pastore et al., 1992). The choice of acylphosphatase is 
fairly arbitrary, though its small size and compact Q + @ topol- 
ogy (shown  in  Fig. 3) are plus points. The coordinates used  were 
those of the first (of 5 )  model in the Brookhaven file IAPS. To 
measure the overall  degree of sequence conservation, percentage 
identity between  every pair of sequences was calculated and av- 
eraged across all 45 sequence pairs. The overall conservation is 
shown plotted against population size in Figure 4. along with 
the average value of the objective function for each population. 
It may be concluded from these plots that  no real benefit is 
gained from choosing a very large population size (1 ,OOO or 
greater), and that a population of 200 is quite  satisfactory. The 
highest degree of conservation was  given  by a population size 
of 500 sequences, albeit by a small margin, and this population 
size  was  used throughout the following experiments. 

The 10 final sequences for 10 runs with a  population of 500 
sequences are shown in Figure 5 ,  along with the native  sequence. 
The highest  sequence similarity between the native sequence and 
the 10 designed sequences is only 27% over 45 residues. Gener- 
ally speaking the residues making the most contact with other 
residues are  the ones that  are  the most highly constrained and 

Fig. 3. Molscript  (Kraulis, 1 9 9 1 )  diagram of the target acylphosphatase 
structure. 
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Fig. 4. Plot of average population energy (A) and average percentage 
of sequence identity (B) against population size for acylphosphatase. 

are thus seen to be conserved between different runs of the pro- 
gram. Both the residue conservation and  the 8-A contyct num- 
ber (the number of surrounding CQ atoms within 8  A of the 
residue CQ under  consideration; Nishikawa & Ooi, 1986) are 
plotted against sequence position for  the designed sequences in 
Figure 6. 

As final examples, the redesign of 2 proteins originally de- 
signed during the 1991 EMBL Protein Design Workshop (Sander 
et  al., 1992) will be considered.  The  first example is an 
8-stranded (4-on+ @-sandwich, called shpilka. The topology 
chosen for shpilka has  not yet  been observed, though its struc- 
ture violates none of the known protein folding rules (Fig. 7). 
Apart  from barring the use of cysteine, no constraints were im- 
posed on  the choice of residues for each structural site. After 
9 cycles totalling 2,455 generations, the following sequence was 
obtained: 

1: GMSVTVTITMGCQKTEVSVSRPGPPPWRVTVTLTIGDGKIRIKLDTHDH 

50: YEVPLTYTGGGTITVTIILHMGGRKVPLTVTTSDFGSVTVTIGLTHG. 
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Native: STARPLKSVDYEVFGRVQGVCFREDEARKIGWGWVKNTSKGTVTGQVQGPEEKVNSMKSWLSKVGSPSSRIDRTNFSNEKTISKLEYSNFSVRY 
Struct : EEEEEEE nnnnnnnnnnnn EEEEEEE EEEEEEEE nnnnmnnnnn EEEEEEEEE EEEEE 

NSEKPWVVWRIPMPGSRWGVSEWLMRRLKKYGIVFYIKKSSNGHVYIVWLTQEALEALREFFRKKTDNSFKFGTVQVSSATSVYSTETDSIYGGN 
KPKSKSVYWIIVPWPGNRWGVREWFAERLKSDNGYIYFIWLSREALEALRKLIRKKTSPSYKFGTVTVTGQQSHSSSERDTVYSGN 
NSKKPWWWPIPMPGDKYRWREWFARRLKEISNSSNGHVWIWLSQEALEALRELIKKKTDSGFKFGTVSVTQSTSWSTETDSVYRGN 
NDEKPVVMVIVRVPIPNGRWGVREWLMERLKKYGIVFYISKSSNGHVYWIVLTQEALEALRKFFREKTSPSYKFGTVWSSmWJQTGSDSIYSSK 
NDETPVVYVWRVPIPNDRWGVSEWIl.IERLKKMGVFFYIKKSSNGHVYIIWLTQEALEALRKFFRKKRSTSYKFYKVQVSSSTTVWQTGSNSIYGGE 
NSKKKVVWIVRVPMPGDRWGVEEWIl.IRRLKEYGIFFYIKKSSNGHVYIVWLTREALEALREFFKKKTSPSYQFYTVWSSSTSVWQTNTSSIYGGN 
KSKTPVPVVWRVRMQNDGWGVSEWLAERLKKVGIFFYISKSSNGHVYVVWLTQEALEALRKFIREKTDPNSKFYTITVRQGESWSTNSPGIYSSK 
NSKTKVPVVWAVYFSGGGWGVR~RRLKKYGIVWYIVPTENG~IFI~SREALEALRQFIREKSDPNS~KVTFTQSS~STESDPIYSSK 
NSKKKVPYWIPIPMQNDGWGLREWLLRRLKEMGVVFYISKSSNGHVYVVVVMSEEAIEALREFIKKKTSPSYKFY~RRSVWSTETDSVYSGN 
NSKGKVVMIWRIPMPNDSYPVREWLAERLKKYGIFFWISKSSNGHVYVVWLTEEALEALRKFIRQKYDPNSKVGTVTVRGTQSGSNSVYSSE 

Consens : EW RLK G NG V EA EALR K Y 

Fig. 5. Best designed sequences for  acylphosphatase  from 10 independent populations of 5 0 0  sequences. The native sequence 
is shown,  along with a summary of the  author-assigned secondary structure (“E” for strand, “H” for  a-helix). 

Figure 8 shows the threading histogram for  the designed se- 
quence, along with the position of the originally designed se- 
quence. Even though the shpilku structure is fictional (in that 
it has not yet  been observed in nature) and the original sequence 
was designed essentially by a process of human contemplation, 
it is remarkable that the original sequence does appear  to be 
highly compatible with the structure, and a testament to the skill 
of the human designers.  Despite this, the automatically designed 
sequence is found to be a far more favorable match for the given 
structure. This is particularly apparent when the pairwise  energy 
and solvation energy sums are considered separately. The pair- 
wise pseudoenergy sum for  the original sequence is calculated 
to be -57 kcal/mol. but is as low as -207 kcalhol  for  the de- 
signed sequence, which is far more typical of a native-sequence- 
native-structure threading energy.  Both the original and designed 
sequences have suitably favorable solvation energies (- 13 and 
-20 kcalhol ,  respectively). 

Another of the proteins designed during the 1991 EMBL Pro- 
tein  Design Workshop (Sander et d., 1992) was a minimal  NAD- 
binding protein called leather comprising a parallel @-sheet  with 
helices packed on either side, and was based on fragments of 
natural NAD-binding proteins (though mainly lactate dehydrog- 
enase). In this case the residues required for NAD binding (de- 

fined as close contacts to the NAD group) were constrained. The 
following template was used: 

1: XXCXTXXXQXXXXXXXXXXXXXXXXXXIXVVGYGAVGXXXAXXXXXXXX 

50: XXXVXXXDGXXXYXXXXXXXXXXXTAGARXXCXXXXXXLXXXNXXIXXXI 

100: xxxxxxxxxxxxxxxvsxxsxxxxxxxxxxxx. 

The target structure  and constrained residues are depicted 
graphically  in Figure 9. After 8 cycles totaling 2,143 generations, 
the following sequence was obtained: 

1: GNCDTYAEQAKELLERLKEQQNKPMTVIIVVGYGAVGKALAQALKEAGV 

50: YDTVVVIDGGKPYESIRPLPVIIITACARRSCGHPPDDLHQSNLDILKNI 

100: LRALFKRFPNYTVYWVSYWSETIREFLAKAFG. 

Figure 10 shows the threading histogram for  the designed  se- 
quence,  along with the position of the originally designed se- 

b 2ol 

0 20 40 60 80 100 

Sequence index 

Fig. 6. Plot of sequence conservation and 8-A contact  number against Fig. 7. Molscript (Kraulis, 1 9 9 1 )  diagram of target structure for shpilka 
sequence position index for designed acylphosphatase sequences. sequence. 
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quence. Again it is clear that  the human  protein designers did 
a good job of creating a compatible sequence, though not as well 
as  the  computer  program. 

Discussion 

With reference to  the chosen criteria,  the described method is 
clearly able to generate seemingly  realistic protein sequences that 
are highly compatible with their target 3-dimensional structures. 
The method is  easy to apply to a wide range of protein design 
problems and does not require inordinate amounts of computer 

c 

1 

Fig. 9. Ribbon diagram of the target structure for leather sequence, ren- 
dered by Molscript and Raster3D (Bacon & Anderson, 1988; E. Mer- 
ritt & M. Murphy, unpubl. results). Ca positions of constrained residues 
are indicated by  yellow spheres. 

time to complete. The most glaring deficiency in the method is 
that, although it is  clear that the designed  sequences have a good 
chance of being stable if deliberately folded into  the specified 
structure,  there is absolutely no guarantee that they will be able 
to arrive at this fold by the normal processes of protein fold- 
ing. Our present state of ignorance as to the mechanisms of pro- 
tein folding is such that there is little that can be done  to 
overcome this problem. Obviously the next step will be to syn- 
thesize these designed proteins and  to test whether they are ca- 
pable of folding at all. If they do form compact stable structures 
with the expected secondary structure compositions, then more 
explicit structural determinations may  be attempted. Work along 
these lines  is underway. 

Another  point to consider with the described protein design 
strategy is whether or not the resultant sequences are over- 
designed. As implemented, the genetic algorithm attempts to lo- 
cate the global optimum sequence for a given structure, an 
optimum that often has a lower value of the objective function 
than the native sequence itself. Such overdesign might be ben- 
eficial in that the designed  sequence might very  readily form the 
required structure  and be particularly stable in that conforma- 
tion, but another possibility is that  the global energy minimum 
for the protein chain is so deep and narrow that the chain never 
manages to locate the minimum in a biologically useful time. 
In view of this it may therefore be more appropriate  to halt the 
optimization as soon as the value of the objective function is re- 
duced to the value  achieved by the native sequence and thus pre- 
vent the energy minimum from becoming too deep. 

Away from  the extreme case of de novo design  of a complete 
protein sequence, more restricted use  of the program may  be on 
safer  ground. In the above examples, the  majority of the tar- 
get protein sequence was arrived at by the artificial selection 
principles as described. Perhaps a more reasonable use of the 
program is in the redesign of natural proteins, where the native 
sequence is “tweaked” so as to optimize a given constraint. For 
example, consider crambin,  a small plant protein of unknown 
function, which is a highly hydrophobic protein and is insoluble 
in water. A reasonable question that might be posed is whether 
the crambin sequence could be easily modified to render cram- 
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bin soluble in water while maintaining compatibility with its na- 
tive fold.  Starting with a  homogeneous  population of native 
crambin sequences, the protein design program was run with a 
template  constraining the native cysteine residues that  form di- 
sulfide bridges in the folded  structure. Given the design of the 
solvation potentials, the exposed hydrophobic residues that ren- 
der the protein insoluble are likely to be replaced by polar resi- 
dues. Indeed, due  to the presence of these exposed hydrophobic 
residues, the native sequence itself does not  appear to be highly 
compatible with its fold.  The sequence identity between the de- 
signed and native crambin sequences is 32% (most of this comes 
from  the  constrained cysteines) as shown in the following 
alignment: 

10 20 30 40 
Design PYCCPTAQIAAALDRCRKPGITTEECYNAIGCITVNGPGCSSNTPT . . .  . . . .  . . . . .  . . .  . . . .  . . . . . . . .  
Native TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN. 

10 20 30 40 

By limiting the  total number of mutations (10 in this case), se- 
quences much closer to  the native sequence may be generated: 

10 20 30 40 
Design TYCCPSDEIRSNLNQCRKPGTPVAECATATGCIIIPGATCPGDYAN 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Native TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN. 

10 20 30 40 

Improvements to  the measures used to determine sequence- 
structure compatibility are under development. In particular the 
method is being expanded to explicitly take  core packing into 
account.  The simple pairwise potentials described here do en- 
code  some degree of packing information, though only very 
crudely. They are sufficient to ensure that gross overpacking of 
the protein core is avoided, though they are insufficient to avoid 
leaving cavities and  are not sufficient to ensure that  the core 
packing is really optimal.  The route  that is being investigated 
to overcome this  limitation is to use the genetic algorithm to 
search for optimal side-chain conformations  (from  a  library of 
rotamers) at  the same time as it is searching for  an optimal se- 
quence. It should be noted that Tuffery et al. (1991) have already 
applied genetic algorithms to  the problem of fitting side chains 
to protein main chains,  though in their case the amino acid se- 
quence was of course kept constant. Despite the fact that  the 
large increase in the overall search space produced by adding 
side-chain information does result in  slower convergence, the al- 
gorithm does appear to be capable of solving the combined prob- 
lem of sequence optimization and side-chain rotamer selection. 
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